The expression of cell proliferation-related genes in early developing flowers is affected by a fruit load reduction in tomato plants.

نویسندگان

  • Pierre Baldet
  • Michel Hernould
  • Frédéric Laporte
  • Fabien Mounet
  • Daniel Just
  • Armand Mouras
  • Christian Chevalier
  • Christophe Rothan
چکیده

Changes in photoassimilate partitioning between source and sink organs significantly affect fruit development and size. In this study, a comparison was made of tomato plants (Solanum lycopersicum L.) grown under a low fruit load (one fruit per truss, L1 plants) and under a standard fruit load (five fruits per truss, L5 plants), at morphological, biochemical, and molecular levels. Fruit load reduction resulted in increased photoassimilate availability in the plant and in increased growth rates in all plant organs analysed (root, stem, leaf, flower, and fruit). Larger flower and fruit size in L1 plants were correlated with higher cell number in the pre-anthesis ovary. This was probably due to the acceleration of the flower growth rate since other flower developmental parameters (schedule and time-course) remained otherwise unaffected. Using RT-PCR, it was shown that the transcript levels of CYCB2;1 (cyclin) and CDKB2;1 (cyclin-dependent kinase), two mitosis-specific genes, strongly increased early in developing flower buds. Remarkably, the transcript abundance of CYCD3;1, a D-type cyclin potentially involved in cell cycle regulation in response to mitogenic signals, also increased by more than 5-fold at very early stages of L1 flower development. By contrast, transcripts from fw2.2, a putative negative regulator of cell division in tomato fruit, strongly decreased in developing flower bud, as confirmed by in situ hybridization studies. Taken together, these results suggest that changes in carbohydrate partitioning could control fruit size through the regulation of cell proliferation-related genes at very early stages of flower development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transformation of Cry1a105 gene to tomato in order to increase resistance to Heliothis

Tomato (Solanum lycopersicum L.) is an important vegetable in the world, it exposes to a wide range of pathogens and plant pests attack. Fruit worm is one of the most important the plant pest which mainly damage the fruit and causes the yield reduction. In this study, cry1a105 gene was cloned to pBI121 plasmid (with 35S promoter and Nos terminator), and was transferred to tomato by Agrobacteriu...

متن کامل

microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development.

Fruit ripening in tomato (Solanum lycopersicum L.) is well understood at the molecular level. However, information regarding genetic pathways associated with tomato ovary and early fruit development is still lacking. Here, we investigate the possible role(s) of the microRNA156/SQUAMOSA promoter-binding protein-like (SPL or SBP box) module (miR156 node) in tomato ovary development. miR156-target...

متن کامل

Transcript analysis of some defense genes of tomato in response to host and non-host bacterial pathogens

The transcript levels of six defense genes including pathogenesis-related gene 1 (PR-1), pathogenesis-related gene 2 (PR-2), pathogenesis-related gene 5 (PR-5), lipoxygenase (LOX), phenylalanine ammonia-lyase (PAL) and catalase (CAT) were investigated in tomato plants inoculated with Xanthomonas axonopodis pv. phaseoli as a non-host pathogen and X. euvesicatoria as a host pathogen. Activation o...

متن کامل

Genetic transformation of Tomato with three pathogenesis-related protein genes for increased resistance to Fusarium oxysporum f.sp. lycopersici

Fusarium wilt caused by Fusarium oxysporum f.sp. Lycopersici is one of the major obstacles to the production of tomato which causes huge losses in tomato products worldwide. In order to increase the tolerance to this disease, a triple structure containing PR1, chitinase and glucanase genes controlled by 35S promoter was transferred to tomato. Eight days after planting on pre-culture me...

متن کامل

Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion.

We have characterized the tomato (Lycopersicon esculentum Mill.) MADS box gene TM29 that shared a high amino acid sequence homology to the Arabidopsis SEP1, 2, and 3 (SEPALLATA1, 2, and 3) genes. TM29 showed similar expression profiles to SEP1, with accumulation of mRNA in the primordia of all four whorls of floral organs. In addition, TM29 mRNA was detected in inflorescence and vegetative meri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 57 4  شماره 

صفحات  -

تاریخ انتشار 2006